
prefixtree Documentation
Release 0.2

Aaron Iles

August 03, 2013





CONTENTS

i



ii



prefixtree Documentation, Release 0.2

prefixtree implements Python dict and set like objects using a trie or prefix tree. Tries are ordered, tree based data
structures. Using tries adds unique features to dict and set like objects:

• Keys are returned in sorted order.

• Slice operations for getting, setting and deleting values.

Python’s builtin dict is implemented using a hash table. While they are an excellent, general purpose container that
have been heavily optimised. There are use cases where tree based containers are a better solution.

CONTENTS 1

http://docs.python.org/py3k/library/stdtypes.html#dict
http://docs.python.org/py3k/library/stdtypes.html#set
http://en.wikipedia.org/wiki/Trie
http://docs.python.org/py3k/library/stdtypes.html#dict


prefixtree Documentation, Release 0.2

2 CONTENTS



CHAPTER

ONE

TABLE OF CONTENTS

1.1 Overview

1.1.1 Duck Typing

prefixtree provides two container classes, PrefixDict and PrefixSet. They are implementations of the
MutableMapping and MutableSet Abstract Base Classes. Any modules that adhere to the principle
of duck-typing should be able to accept a PrefixtDict or PrefixSet in place of a dict or set.

1.1.2 Compatability

prefixtree is implemented to be compatible with Python 2.x and Python 3.x. It has been tested against the following
Python implementations:

• CPython 2.6

• CPython 2.7

• CPython 3.2

• PyPy 1.9.0

Continuous integration testing is provided by Travis CI.

1.1.3 Benchmarks

Benchmarks show that prefixtree is 200 times slower than the builtin dict and requires 10 times the memory.

Collection Memory Run Time
dict 40MB 0.34s
PrefixDict 453MB 67s

The following script was used to benchmark the memory usage and cpu utilisation of PrefixDict.

"""Test memory consumption and processing time with PrefixDict.

Use words from ’/usr/share/dict/words’ as keys for PrefixDict and measure
memory consumption and load time.
"""
import resource
import sys

3

http://docs.python.org/py3k/library/collections.abc.html#collections.abc.MutableMapping
http://docs.python.org/py3k/library/collections.abc.html#collections.abc.MutableSet
http://docs.python.org/py3k/library/abc.html#abc
http://docs.python.org/py3k/glossary.html#term-duck-typing
http://docs.python.org/py3k/library/stdtypes.html#dict
http://docs.python.org/py3k/library/stdtypes.html#set
http://travis-ci.org/#!/provoke-vagueness/prefixtree
http://docs.python.org/py3k/library/stdtypes.html#dict


prefixtree Documentation, Release 0.2

from prefixtree import PrefixDict

if __name__ == ’__main__’:
start = resource.getrusage(resource.RUSAGE_SELF)
glossary = PrefixDict()
with open(’/usr/share/dict/words’) as words:

for word in words:
glossary[word.strip()] = None

stop = resource.getrusage(resource.RUSAGE_SELF)
rss_mb = (stop.ru_maxrss- start.ru_maxrss) / 1024.0 / 1024.0
tused = (stop.ru_utime + stop.ru_stime)
sys.stdout.write(’{0} MB\n’.format(rss_mb))
sys.stdout.write(’{0} seconds\n’.format(tused))

They are compared to the results for the following script testing the builtin dict:

"""Test memory consumption and processing time with builtin dict.

Use words from ’/usr/share/dict/words’ as keys for dict and measure memory
consumption and load time.
"""
import resource
import sys

if __name__ == ’__main__’:
start = resource.getrusage(resource.RUSAGE_SELF)
glossary = {}
with open(’/usr/share/dict/words’) as words:

for word in words:
glossary[word.strip()] = None

stop = resource.getrusage(resource.RUSAGE_SELF)
rss_mb = (stop.ru_maxrss- start.ru_maxrss) / 1024.0 / 1024.0
tused = (stop.ru_utime + stop.ru_stime)
sys.stdout.write(’{0} MB\n’.format(rss_mb))
sys.stdout.write(’{0} seconds\n’.format(tused))

The benchmarks where run using:

• CPython 3.2, 64-bit

• Max OSX 10.7.4

• 2010 Macbook Pro

The benchamrks values were averaged from three runs of each benchmark script.

1.2 Guide

1.2.1 Introduction

prefixtree provides both PrefixDict, a dictionary like object, and PrefixSet, a set like object. Both are imple-
mented using prefix trees, or tries.

4 Chapter 1. Table of Contents

http://docs.python.org/py3k/library/stdtypes.html#dict
http://docs.python.org/py3k/glossary.html#term-dictionary
http://en.wikipedia.org/wiki/Trie


prefixtree Documentation, Release 0.2

Tries

Tries, also known as prefix trees, are an ordered tree data structure. Trie minimise the ammount of memory required
to store keys if the keys frequently share the same prefix.

In addition to minimising memory, the keys in tries are ordered. This allows prefix tree based dicts and sets to support
slicing operations.

Note: Memory minimisation is an academic property of the data structure. Comparing a pure Python trie to an
optimised C hash table may not demonstrate any memory savings.

Keys

The keys used in prefixtree collections must be a str or bytes object. Unicode strings will be encoded to bytes
before storage and after retrieval. Because of this ’\u2641’ and b’\xe2\x99\x81’ are equivalent keys.

1.2.2 Installation

Use pip to install prefixtree from PyPI.

$ pip install --use-mirrors filemagic

The --use-mirrors argument is optional. However, it is a good idea to use this option as it both reduces the load
on PyPI as well as continues to work if PyPI is unavailable.

The prefixtree module should now be availabe from the Python shell.

>>> import prefixtree

The sections bellow will describe how to use PrefixDict and PrefixSet.

1.2.3 PrefixDict

This dictionary like object, implemented using a trie, is an implementation of the MutableMapping Abstract
Base Class. PrefixDict supports the same construction methods as the builtin dict object.

>>> from prefixtree import PrefixDict
>>> pd = PrefixDict()
>>> pd[’a’] = Ellipsis
>>> ’a’ in pd
True

The most significant difference between PrefixDict and builtin dict object is that PrefixDict supports using
a slice when getting, setting and deleting keys. When a slice is used to get values an iterator is returned.

>>> pd.update([(’a’, 0), (’b’, 1), (’c’, 2)])
>>> list(pd[’a’:’b’])
[0, 1]

Unlike slices for sequence objects, such as list and tuple, slices on PrefixDict are inclusive of both the start
and the stop values. Step values of 1 and -1 are supported. Indicating forward and reverse iteration.

>>> list(pd[’a’:’c’:-1])
[2, 1, 0]

1.2. Guide 5

http://en.wikipedia.org/wiki/Trie
http://docs.python.org/py3k/library/stdtypes.html#str
http://pypi.python.org/pypi/pip
http://pypi.python.org
http://pypi.python.org
http://pypi.python.org
http://docs.python.org/py3k/library/collections.abc.html#collections.abc.MutableMapping
http://docs.python.org/py3k/library/abc.html#abc
http://docs.python.org/py3k/library/abc.html#abc
http://docs.python.org/py3k/library/stdtypes.html#dict
http://docs.python.org/py3k/library/stdtypes.html#dict
http://docs.python.org/py3k/glossary.html#term-iterator
http://docs.python.org/py3k/glossary.html#term-sequence
http://docs.python.org/py3k/library/stdtypes.html#list
http://docs.python.org/py3k/library/stdtypes.html#tuple


prefixtree Documentation, Release 0.2

When setting a range of values using a slice from a PrefixDict, the new values are iterated over in order, replacing
the current values from the slice.

>>> pd[:’b’] = [3, 4]
>>> pd[’a’]
3
>>> pd[’b’]
4

If there are fewer new values than there are values in the slice an ValueError exception is raised. The exception i
raised after updating all possible values from the PrefixDict.

>>> pd[’b’:] = [5]
Traceback (most recent call last):

...
ValueError: Fewer new elements to than slice length
>>> pd[’b’]
5

Deleting slices works similar to getting slices. They are also inclusive of both the start and the stop value.

>>> del pd[’b’:’b’]
>>> ’b’ in pd
False

In addition to the standard dict interface, a PrefixDict has the following additional methods.

• commonprefix()

• startswith()

commonprefix‘() returns the longest common prefix between the supplied key and the keys already in the
PrefixDict.

>>> pd.commonprefix(’aa’)
’a’

startswith() iterates over all keys that begin with the supplied prefix.

>>> pd = PrefixDict(aa=0, ab=1, ac=2)
>>> list(pd.startswith(’a’))
[’aa’, ’ab’, ’ac’]

Matching keys are returned in order. The order can be reversed by passing True for the reverse parameter.

1.2.4 PrefixSet

This set like object, implemented using a trie, is an implementation of the collections.MutableSet.
Abstract Base Class.

>>> from prefixtree import PrefixSet
>>> ps = PrefixSet()
>>> ps.add(’abc’)
>>> ’abc’ in ps
True

PrefixSet supports the same construction methods as the builtin set object.

6 Chapter 1. Table of Contents

http://docs.python.org/py3k/library/stdtypes.html#dict
http://docs.python.org/library/collections.html#collections.MutableSet
http://docs.python.org/py3k/library/abc.html#abc
http://docs.python.org/py3k/library/stdtypes.html#set


prefixtree Documentation, Release 0.2

1.3 Issues

Source code for prefixtree is hosted by GitHub.

Continuous integration testing is hosted by Travis CI.

And bug reports or feature requests can be made using GitHub’s issues system.

1.4 API

Collection classes implemented using prefix trees.

1.4.1 PrefixDict

class prefixtree.PrefixDict([arg])
Implementation of MutableMapping that conforms to the interface of dict.

A PrefixDict has some extensions to the interface of dict.

d[i:j:k]
Return iterable from i to j in the direction k.

If i or j is None the slice is open ended. k may be -1 or 1. If -1 the values are returned in reverse order.

commonprefix(key)
Find the longest common prefix between the key provided and the keys in the PrefixDict.

startswith(prefix)
Iterate over all keys that begin with the supplied prefix.

1.4.2 PrefixSet

class prefixtree.PrefixSet([iterable])
Implementation of MutableSet that conforms to the interface of set.

1.3. Issues 7

https://github.com/provoke-vagueness/prefixtree
http://travis-ci.org
https://github.com/provoke-vagueness/prefixtree/issues
http://travis-ci.org/#!/provoke-vagueness/prefixtree
http://en.wikipedia.org/wiki/Trie
http://docs.python.org/py3k/library/collections.abc.html#collections.abc.MutableMapping
http://docs.python.org/py3k/library/stdtypes.html#dict
http://docs.python.org/py3k/library/stdtypes.html#dict
http://docs.python.org/py3k/library/collections.abc.html#collections.abc.MutableSet
http://docs.python.org/py3k/library/stdtypes.html#set

